Traffic Message Channel Codes: Impact and Use within the Coalition

Stan Young
National Renewable Energy Lab

May 11, 2016
Housekeeping Items

• Please call Joanna at 610-662-5569 for difficulties with the web or audio application

• This is a virtual meeting experience
 – Please keep your phone muted until asking a question or speaking (press *6 to mute/unmute individual phone lines)
 – Please do not place call “on hold” as your hold music will be heard by the group

• Contact Information will be provided at the end of the presentation
Please confirm that your line is muted

*6

Thank you!
Upcoming Events

Automated Vehicle Policy and Regulation
A State Perspective Workshop
May 18, 2016 • 9:00 AM to 3:30 PM
● Howard Frank Auditorium/Robert. H. Smith School of Business University of Maryland, College Park, MD

THE NATIONAL RESEARCH ENERGY LABORATORY
GOLDEN, COLORADO

THE I-95 CORRIDOR COALITION
Connected and Automated Vehicles: What Public Agencies Need to Know
June 21-22, 2016 at the Maritime Institute Conference Center, Linthicum (Near BWI Airport), Maryland
I-95 Vehicle Probe Project Background

• Phase I
 – Initiated in 2008 – July 1
 – Initial 2500 miles (1500 freeway, 1000 arterial)
 – Maine to Florida, Purchase once - all share

• Phase II
 – Several states all in
 – 2016 ~ 40,000 miles
 – Three vendors
 – Leading edge tools
Disclaimer

• “Material obtained … from consultation with industry experts, literature review, first-hand experience with manipulating various implementations of TMCs, and lessons learned through the Vehicle Probe Project (VPP) re-compete process.”

• Material and recommendations provided with respect to use of TMC codes within the industry - not any particular vendor.
What is a TMC code?

• **Traffic Message Channel** code:
 – Shorthand method to communicate a location
 – Breaks the roadway network into links and nodes
 – Developed by traffic industry to relay traffic data with low-bandwidth channels
 – Used extensively in commercial traffic data
 – Until the VPP, not widely used in government in North America
How to read a TMC code

The following TMC can be broken down
110N04615

110 - The area code/ region
N – The direction of travel
04615 – Defines road and segment in linear manner

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Internal/ External</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>S, E, CCW</td>
</tr>
<tr>
<td>- *</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>I</td>
<td>N, W, CW</td>
</tr>
<tr>
<td>+ *</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

* TeleAtlas only
Example from the VPP Project

TMC Codes defined for:
- Freeways
- Principal Arterials
- Some Minor Arterials
- Freeway-to-freeway ramps
- Special use lanes
 - If separate roadway

Not defined for:
- Individual lanes
- Most minor arterials and below

TMC Codes break the network into logical segments for reporting traffic
Why study TMC codes?

• *Tech questions from VPPI*
 – Length of segments not always useful for application
 – New roadways took a long time to be reflected
 – Codes not available for all roadways types

• *Programmatic issues:*
 – Availability of base maps
 – Licensing concerns
 – Conflation to agency LRS
“Traffic Message Channel (TMC) Codes: Impact and Use within the Coalition”

• White Paper funded by MCOM1 (2011)
• Published ~ December 2015
• Addresses:
 – TMC Background
 – TMC Code Governance
 – TMC Implementation Issues
 – TMC Pros and Cons
 – Recommendations and Key Findings
Executive Summary

• **TMCs are a good thing!!!!!!!**
 – Standards based, industry maintained
 – Recommended for Traveler Info and Performance Measures
 – Minor differences in technical implementation

• **VPP Phase II Resolutions**
 – New roadways added in a timely fashion
 – Alternate segmentation schemes available
 • Provides higher granularity, and more coverage

• **Conflation may be required**
TMC Background

- VPPI – TeleAtlas TMC codes were used
- VPPII – TeleAtlas & Navteq TMC codes
TMC Code Governance

• Standards
 – Maintained by the Traveler Information Services Association (TISA), hosted in ERTICO (ITS Europe)
 – Serve as guidelines to create TMC tables containing roadway points and corresponding segments

• The North American TMC Code Alliance (NATMCCA) maintains the American and Canadian TMC Table
What is a TMC Table?

- Provides locations where roadway is broken into segments usually at intersection, political borders, or natural features
- TMCs are descriptive of road intersections
- Defines points, connecting points creates segments in TISA standards.
- Tables are proprietary, maps of TMC tables available from mapping vendors
TMC Layers

TMC Standard – Ertico / TISA
How to create TMC Tables – ISO standards

North America TMC Code Alliance
Predominant TMC Tables in use in North America – HERE & TomTom

Electronic Map Makers
Distribute and license digital maps with TMC elements
– TeleAtlas (TomTom) and Navteq (HERE)

Traffic Data Vendors
Traffic Data Products delivered in TMC Coding – INRIX, HERE, TomTom & others

Standards Layer

TMC Table Layer (descriptive)

Map Layer (Lat & Lon)

Traffic Data Layer
Flavors of TMC

Minor Differences At End Points
TMC Pros and Cons

Pros
• Not data intensive
• Maintained by industry consortium
• Maintained to TISA standard
• Backwards / forward compatible
• Tools / mapping layers available
• Serves traveler info and performance measures
• Very cost effective to implement
• Only national standard available

Cons
• Segments may be too long or tool short for specific application
• Not available on all facilities (HOV/HOT, ramps, lower classifications)
• Tables owned by NATMCCA
• Update process may be lengthy
• Some apps may require conflation to agency LRS
Backward/forward compatibly
Backward/forward compatibly
New intersection

Forward / Backward compatibility preserved at the TMC point layer
TMC Length Differences

Outliers due to TMC set version differences

99%+ agree
Key Findings

• TMC’s will continue to enable cost-effective and stable data delivery
 – TMC traffic data ‘sweet spot’ are performance measures and traveler information on freeway and other principle arterials

• Alternative segmentation schemes are available by each vendor (available in appendix)
 – Alternate segmentation schemes enable applications requiring greater spatial resolution

• New standard unlikely
Alternate Segmentation Schemes

• Pros
 – More responsive – can create new segments faster
 – Higher granularity, fully controlled by vendor

• Cons
 – Vendor Specific – may be proprietary or open source
 • Cannot be easily ported to new data source or maps
 – Not standard, tools (apart from vendor) lacking
 – Conflation may be required
Executive Summary

• **TMCs are a good thing!!!!!!!**
 – Standards based, industry maintained
 – Recommended for Traveler Info and Performance Measures
 – Minor differences in technical implementation

• **VPP Phase II Resolutions**
 – New roadways added in a timely fashion
 – Alternate segmentation schemes available
 • Provides higher granularity, and more coverage

• **Conflation may be required**
Recommendations for the Coalition

- Use TMCs for long-term analysis, traveler info, sharing of data, higher level facilities
- Use non-TMC methods as needed, conflation may be required
- I-95CC provide a forum for best practices
- Encourage open standards when possible
- Continue developing and sharing TMC educational material
Questions?
TMC Code Report or Webcast Questions

Stan Young, National Renewable Energy Lab
at 301-792-8180 or stanley.young@nrel.gov
VPPII Contact Info

• Contracting Issues: Kathy Frankle at 301-405-8271 or kfrankle@umd.edu

• Data Validation: Masoud Hamedi at 301-405-2350 at masoud@umd.edu

• General Project Questions: Trish Hendren at 202-441-6621 or phendren@i95coalition.org

• Logistics: Joanna Reagle at 610-228-0760 or jreagle@kmjinc.com
Thank You