CV PILOT DEPLOYMENT PROGRAM GOALS

- Spur Early CV Tech Deployment
 - Wirelessly Connected Vehicles
 - Mobile Devices
 - Infrastructure

- Measure Deployment Benefits
 - Safety
 - Mobility
 - Environment

- Resolve Deployment Issues
 - Technical
 - Institutional
 - Financial
Pilot Sites

- ICF/WYDOT
- NYCDOT
- Tampa (THEA)

Overall Deployment Schedule

Phase 1 (up to 12 months)
- Concept Dev.
- In Progress

Phase 2 (up to 20 months)
- Design/Deploy/Test
- Progress Gate
- Follow-On Cooperative Agreement
- Transition

Phase 3 (minimum 18 months)
- Maintain/Operate Pilot
- Post-Pilot Operations

Routine Operations (ongoing)

- Phase 1 – Creates the foundational plan to enable further design and deployment
- Phase 2 – Detailed design and deployment followed by testing to ensure deployment functions as intended (both technically and institutionally)
- Phase 3 – Focus is on assessing the performance of the deployed system
- Post Pilot Operations (CV tech integrated into operational practice)
Kate Hartman (ITS JPO), ICF/WYDOT CV Pilot Site COR
Objective:

- Reduce the number and severity of adverse weather-related incidents (including secondary incidents) in the I-80 Corridor in order to improve safety and reduce incident-related delays.
 - Focused on the needs of the commercial vehicle operator in the State of Wyoming

Approach:

- Equip fleet vehicles (combination of snow plows, maintenance fleet vehicles, emergency vehicles, and private trucks) that frequently travel the I-80 corridor to transmit basic safety messages (BSMs), collect vehicle and road condition data and provide it remotely to the WYDOT TMCs
- Deploy DSRC roadside equipment (RSE) to supplement existing assets and initiatives
- Road weather data shared with freight carriers who will transmit to their trucks using exiting in-vehicle systems

Deployment Team:

- Prime Consultant: ICF International; Partner State: Wyoming DOT
- Sub Consultants: Trihydro Corporation, National Center for Atmospheric Research, University of Wyoming, Catt Laboratory and McFarland Management
ICF/WYDOT PILOT DEPLOYMENT SITE: HIGH PRIORITY CORRIDOR

Wyoming I-80 Corridor – Connected Vehicle Map

Legend:
- High Profile Wind Warning Area
- AVL/Tablet Snow Plows
- STIP Areas 2015-2018
- WyoLink - Signal Strength
 - Good
 - Spotty
 - Unreliable
- I-80, Wyoming
- Possible Locations Roadsides DSRC
- Roadsides DSRC
- WiFi Locations (9 within 500 ft of I-80)
- YSL Devices (122 on I-80)
- Truck Parking (55 on I-80)

Source: Wyoming CV Pilot Deployment Team
ICF/WYDOT Pilot Deployment

Proposed CV Applications: Summary

<table>
<thead>
<tr>
<th>CV Application</th>
<th>WYDOT Snow Plows</th>
<th>WYDOT Maintenance Fleet Vehicles</th>
<th>Emergency Vehicles</th>
<th>Private Trucks/Commercial Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Road Weather Advisories for Trucks and Vehicles</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2. Automatic Alerts for Emergency Responders</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3. CV-enabled Weather-Responsive Variable Speed Limits</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4. Spot Weather Impact Warning</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5. Work Zone Warnings</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6. Situational Awareness</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>7. Truck Parking Availability for Freight Carriers</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>8. Freight-Specific Dynamic Travel Planning</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
Objective:

- Improve safety and mobility of travelers in New York City through connected vehicle technologies
 - Aligned with the NYC’s Vision Zero initiative, which seeks to reduce crashes and pedestrian fatalities, and increase safety of travelers in all modes of transportation

Approach:

- Equip up to 10,000 vehicles (taxis, buses, commercial fleet delivery trucks, and City-owned vehicles) that frequently travel in Midtown Manhattan and Central Brooklyn to transmit and receive connected vehicle data
- Install V2I technology at high-accident rate arterials:
 - Upgrade 239 traffic signals along 1st, 2nd, 5th, and 6th Avenues in Manhattan and Flatbush Avenue in Central Brooklyn (emergency evacuation route)
 - Deploy Roadside equipment (RSE) along FDR Drive

Deployment Team:

- Prime Consultant: NYC DOT
- Sub Consultants: JHK Engineering, Battelle, Cambridge Systematics, KLD Engineering, Security Innovation and Region 2 University Transportation Research Center
Manhattan Grid
- Closely spaced intersections (600’ x 250’)
- Day vs. Night conditions
- Residential/commercial mix
- High accident rate (red dot) (2012-2014)
 - 20 fatalities
 - 5,007 injuries
- 204 intersections

Central Brooklyn – Flatbush Ave
- Over-Height restrictions
 - Tillary St.; Brooklyn Bridge
- High accident rate (red dots) (2012-14)
 - 1,128 injuries
 - 8 fatalities
- Average AM speed 15 mph
- 35 intersections

Manhattan – FDR Drive
- Limited access highway
- Excludes trucks/buses
- Short radius of curvature
- Over-Height restrictions
- $1,958,497 in Over-Height incident delay costs (2014)
 - 24% of City-wide total

Source: NYC DOT
<table>
<thead>
<tr>
<th>CV Application</th>
<th>Taxi & Limousine</th>
<th>NYC DOT/ Sanitation</th>
<th>MTA/ NYCTA Buses</th>
<th>Commercial Vehicles</th>
<th>Pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Speed Compliance</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2. Red Light Violation Warning</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3. Ped. in Signalized Crosswalk Warn.</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4. RT Vehicle in Front of Bus Warning</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>5. Mobile Accessible Ped Signal Sys.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>6. Curve Speed Compliance</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>7. Oversize Vehicle Compliance</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>8. Work Zone Speed Compliance</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>9. I-SIG</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>10-14. V2V Applications (5)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>15. Evacuation Information</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Objective:

- The primary objective of this deployment is to alleviate congestion and improve safety during morning commuting hours.
 - Deploy a variety of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) safety, mobility, and agency data applications to create reinforcing benefits for motorists, pedestrians, and transit operation.

Approach:

- Deploy a variety of connected vehicle technologies on and in the vicinity of reversible express lanes and three major arterials in downtown Tampa to solve the following transportation challenges:
 - Morning peak hour queues, wrong-way entries, pedestrian safety, bus rapid transit (BRT) signal priority optimization, trip time and safety, streetcar trolley conflicts, and enhanced signal coordination and traffic progression.

Deployment Team:

- Prime Consultant: Tampa Hillsborough Expressway Authority (THEA)
- Sub Consultants: HNTB Corporation, Siemens Industry, Inc., Booz Allen Hamilton, Center for Urban Transportation Research at University of South Florida and Global-5 Communications
Tampa (THEA) Pilot Deployment Site
An Overview of Downtown Tampa
Tampa (THEA) Pilot Deployment Site Needs: Issues and Applications Relationship

CV Applications:
- V2I Safety: Curve Speed Warning
- V2V Safety: EEBL and FCW
- V2I Safety: Pedestrian in Signalized X-walk
- V2I Safety: Mobile Accessible Pedestrian Signal PED-SIG
- V2I Safety: IMA
- Mobility: I-Sig
- Agency Data: Probe Enabled Traffic Monitoring
- Mobility: TSP
- V2V Safety: Vehicle Turning in Front of Bus

Use Case/Need:
- Morning Backups
- Pedestrian Conflicts
- Wrong Way Entries
- Traffic Progression
- BRT Optimization
- Trip Times
- Safety
- Streetcar/Auto/Ped/Bike Conflicts

Location:
- REL at Twiggs Street
- Twiggs Street - Courthouse
- REL at Twiggs Street
- Meridian Avenue
- MacDill AFB
- BRT-REL to Marion Street
- Channelside
CONNECTED VEHICLE PILOT
Deployment Program

Performance Measurement and Evaluation

ITS Joint Program Office
Performance Measurement

- Means of assessing the progress made towards attaining established goals
- Not just about data collection, verification, and cleaning but also about using the data to understand the system

Performance Monitoring

- Ongoing tracking of performance to assess if targets have been or likely to be met
- Enables system managers to take corrective and proactive actions to control and manage the system
- Allows system managers to understand the impacts of investments and policies

Performance Evaluation

- Systematic and objective examination of measures and outcomes to understand the impacts of investments and policies have on performance, thus improving current and future planning and investment decisions
- Conducted by an independent party who has no vested interest or stake in the project
LESSONS LEARNED IN CV PILOTS CONCEPT DEVELOPMENT PHASE

- Stakeholder interaction early and often leads to better concepts and more buy-in
- Sites are eager to consume USDOT technical assistance
 - Deployments are complex, requiring a lot of diverse elements to come together in an integrated system (technical, security, privacy, performance measurement, institutional, financial, etc.)
- Site-to-site coordination can be useful (since not set up as competitive)
 - Cooperation on security, vendor interaction, stakeholder coordination (UPS in WY and NYC)
 - Participation in virtual roundtables
- Building in performance measurement to a deployed system requires some serious thinking in the concept development phase
- We didn’t forget a key area in Phase 1 (so far), e.g., training or safety management
- The deliverables from the sites are creating examples for others to follow
 - E.g., good lessons learned from Safety Pilot Model Demonstration (SPMD) on installation planning/training
- Concept development takes some time to conduct – prior to procuring/designing/installing equipment
- Using standards (intelligently) can help to advance sites systems engineering
THE BIG PICTURE

Smart City

“A city that uses information and communications technology to enhance its livability, workability, and sustainability.”

The Smart Cities Council
Technology convergence will revolutionize transportation, dramatically improving safety and mobility, enhancing ladders of opportunity, and reducing environmental impacts.

Benefits
- Order of magnitude safety improvements
- Reduced congestion
- Reduced emissions and use of fossil fuels
- Improved access to jobs and services
- Reduced transportation costs for gov’t and users
- Improved accessibility and mobility
• Funding: $60 Million for each of fiscal years 2016-2020

• Federal share not to exceed 50% of project cost

• No more than 20% of the total amount in a fiscal year to a single recipient
Join us for the *Getting Ready for Deployment Series*

- Discover more about the 2015 CV Pilot Sites
- Learn the Essential Steps to CV Deployment
- Engage in Technical Discussion

Contact for CV Pilots Program:
Kate Hartman, Program Manager
Kate.Hartman@dot.gov

Contact for Pilot Sites:
- Kate Hartman, ICF/Wyoming Site COR
 Kate.Hartman@dot.gov
- Jonathan Walker, NYC Site COR
 Jonathan.b.Walker@dot.gov
- Govind Vadakpat, THEA Site COR
 G.Vadakpat@dot.gov

Website: http://www.its.dot.gov/pilots
Twitter: @ITSJPODirector
Facebook: https://www.facebook.com/USDOTResearch